Integrating process optimization with energy-efficiency scheduling to save energy for paper mills
Zhiqiang Zeng,
Mengna Hong,
Jigeng Li,
Yi Man,
Huanbin Liu,
Zeeman Li and
Huanhuan Zhang
Applied Energy, 2018, vol. 225, issue C, 542-558
Abstract:
With the surging energy price and environmental concerns, measures to improve energy efficiency have attracted increasing concerns of the manufacture sector, especially energy-intensive manufacturing industries such as tissue paper mills. Energy-efficiency scheduling, as a novel energy-efficient method, has attracted the attention of an increasing number of researchers in recent years. Drying process is the most energy-intensive production process in tissue paper mills, which has a great energy-saving potential. This paper aims to reduce the energy costs for the tissue paper mill, consisting of processing energy cost and set-up energy cost, through integrating drying process optimization with energy-efficient scheduling. First, the energy cost model and the scheduling model were built. Then, the energy cost of the drying process of every job in a given scheduling problem was optimized using particle swarm optimization (PSO). Afterwards, the energy cost was further optimized using energy-efficiency scheduling. In addition, a hybrid non-dominated sorting genetic algorithm II (NSGA-II) was utilized to solve the energy-efficiency scheduling problem. Finally, several real scheduling problems from a real tissue paper mill were addressed using the proposed approach to demonstrate its effectiveness in energy saving. The experiment result showed that there is a great energy-saving potential in the drying process, accounting for up to 12.53% of the total energy consumption. Moreover, the maximum energy saving ratio of the proposed approach could reach 9.03%. On the whole, the proposed approach can provide a new energy-saving method for tissue paper mills or other manufacturing industries.
Keywords: Energy saving; Scheduling; Drying process; Tissue paper mill (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191830761X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:225:y:2018:i:c:p:542-558
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.05.051
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().