EconPapers    
Economics at your fingertips  
 

Demand-side management via optimal production scheduling in power-intensive industries: The case of metal casting process

D. Ramin, S. Spinelli and A. Brusaferri

Applied Energy, 2018, vol. 225, issue C, 622-636

Abstract: The increasing challenges to the grid stability posed by the penetration of renewable energy resources urge a more active role for demand response programs as viable alternatives to a further expansion of peak power generators. This work presents a methodology to exploit the demand flexibility of energy-intensive industries under Demand-Side Management programs in the energy and reserve markets. To this end, we propose a novel scheduling model for a multi-stage multi-line process, which incorporates both the critical manufacturing constraints and the technical requirements imposed by the market. Using mixed integer programming approach, two optimization problems are formulated to sequentially minimize the cost in a day-ahead energy market and maximize the reserve provision when participating in the ancillary market. The effectiveness of day-ahead scheduling model has been verified for the case of a real metal casting plant in the Nordic market, where a significant reduction of energy cost is obtained. Furthermore, the reserve provision is shown to be a potential tool for capitalizing on the reserve market as a secondary revenue stream.

Keywords: Scheduling; Demand response; Industrial demand-side management; Metal casting foundry; Spot market; Ancillary market (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (30)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918304227
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:225:y:2018:i:c:p:622-636

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.03.084

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:225:y:2018:i:c:p:622-636