Using ducted fuel injection to attenuate or prevent soot formation in mixing-controlled combustion strategies for engine applications
R.K. Gehmlich,
C.J. Mueller,
D.J. Ruth,
C.W. Nilsen,
S.A. Skeen and
J. Manin
Applied Energy, 2018, vol. 226, issue C, 1169-1186
Abstract:
Ducted fuel injection is a strategy that can be used to enhance the fuel/charge-gas mixing within the combustion chamber of a direct-injection compression-ignition engine. The concept involves injecting the fuel through a small tube within the combustion chamber to make the most fuel-rich regions of the micture in the autoignition zone leaner relative to a conventional free-spray configuration (i.e., a fuel spray that is not surrounded by a duct). This study is a follow-on to initial proof-of-concept experiments that also were conducted in a constant-volume combustion vessel. While the initial natural luminosity imaging experiments demonstrated that ducted fuel injection lowers soot incandescence dramatically, this study adds a more quantitative diffuse back-illumination diagnostic to measure soot mass, as well as investigates the effects on performance of varying duct geometry (axial gap, length, diameter, and inlet and outlet shapes), ambient density, and charge-gas dilution level. The result is that ducted fuel injection is further proven to be effective at lowering soot by 35–100% across a wide range of operating conditions and geometries, and guidance is offered on geometric parameters that are most important for improving performance and facilitating packaging for engine applications.
Keywords: Soot; Duct; Diesel; Spray; Mixing; Combustion (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918307888
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:226:y:2018:i:c:p:1169-1186
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.05.078
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().