EconPapers    
Economics at your fingertips  
 

Enhancement of the cooling capability of a high concentration photovoltaic system using microchannels with forward triangular ribs on sidewalls

Mario Di Capua H, Rodrigo Escobar, A.J. Diaz and Amador M. Guzmán

Applied Energy, 2018, vol. 226, issue C, 160-180

Abstract: Numerical simulations were performed to investigate a microchannel heat sink device as cooling option for a high concentration photovoltaic system. COMSOL Multiphysics 5.1 software is used to solve three-dimensional equations which consider conjugate heat transfer, viscous dissipations, and temperature-dependent-properties. This study investigates the integration of microchannels with complex geometric features on its inner walls into the solar cell structure, to enhance the heat transfer performance of a microchannel heat sink-based active cooling system. Inner sidewall mounted forward triangular ribs are considered in aligned and offset distributions along the microchannel walls. In addition, numerical analysis is developed for a conventional flat plate heat sink integrated to a high concentration photovoltaic system to stablish a baseline solar cell temperature. The numerical results show that a micro-channel heat sink device can control and keep in very low range the solar cell temperature (<301 K). Compared to a smooth microchannel, forward triangular ribs installed on the sidewalls enhance the heat transfer capability. Microchannels with aligned and offset rib distributions increase the Nusselt number between 1.8 and 1.6 times, respectively, and increase the average friction factors between 3.9 and 2.3 times, respectively. The microchannel heat sink device with forward triangular ribs is more efficient and effective at Re ≤ 200, since the pumping power reaches a high percentage of the total power generated by solar cell when Re > 200. At Re = 400, the pumping power reaches 41% and 23% of the total power generated by a multi-junction solar cell in the aligned and offset rib distribution, respectively. The pumping power is greatly reduced while using smooth microchannel, because the maximum pumping power is only 9.5% of the solar cell power at Re = 400, however, the resulting solar cell temperature is slightly higher compared to microchannels with aligned and offset rib configurations. A microchannel heat sink provides a more effective cooling solution compared to a passive flat plate heat sink for a high concentration photovoltaic system. In addition, the possibility of direct integration of a microchannel heat sink into a solar cell structure as proposed in this study, represents an interesting option to feasibly increase thermal performance to a considerable level by maintaining the solar cell temperature in a very low range.

Keywords: Concentrated photovoltaic; Multi-junction solar cell; Microchannel heat sink; Ribbed microchannels; Solar cell thermal performance (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918307621
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:226:y:2018:i:c:p:160-180

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.05.052

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:226:y:2018:i:c:p:160-180