Experimental validation of additively manufactured optimized shapes for passive cooling
Boyan S. Lazarov,
Ole Sigmund,
Knud E. Meyer and
Joe Alexandersen
Applied Energy, 2018, vol. 226, issue C, 330-339
Abstract:
This article confirms the superior performance of topology optimized heat sinks compared to lattice designs and suggests simpler manufacturable pin-fin design interpretations. The development is driven by the wide adoption of light-emitting-diode (LED) lamps for industrial and residential lighting. Even for advanced lighting technology as LEDs, a large fraction of the input power is still converted to heat. Thus, efficient thermal control lowers energy waste, increases lifetime and reduces maintenance costs of this rapidly growing, expectedly soon to be governing, illumination technology. The presented heat sink solutions are generated by topology optimization, a computational morphogenesis approach with ultimate design freedom, relying on high-performance computing and simulation. Optimized devices exhibit complex and organic-looking topologies which are realized with the help of additive manufacturing. To reduce manufacturing cost, a simplified interpretation of the optimized design is produced and validated as well. Numerical and experimental results agree well and indicate that the obtained designs outperform lattice geometries by more than 21%, resulting in a doubling of life expectancy and 50% decrease in operational cost.
Keywords: Heat sink design; Natural convection; Passive cooling; Topology optimization; LED cooling (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918308237
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:226:y:2018:i:c:p:330-339
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.05.106
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().