EconPapers    
Economics at your fingertips  
 

Zero dimensional dynamic model of vanadium redox flow battery cell incorporating all modes of vanadium ions crossover

M. Pugach, M. Kondratenko, S. Briola and A. Bischi

Applied Energy, 2018, vol. 226, issue C, 560-569

Abstract: A 0-D dynamic mathematical model for a single Vanadium Redox Flow Battery (VRFB) cell is proposed. The model is based on the conservation principles of charge and mass transfer focusing on the precise simulation of crossover with diffusion, migration and convection. The influence of these phenomena on the capacity decay was systematically analyzed, revealing considerable impact of convection component, which dominates under diffusion and migration and mainly responsible for observed capacity loss. The model allows to simulate main characteristics of VRFB systems (such as battery voltage, state of charge, charge/discharge time and capacity decay due to crossover) with high accuracy. The model was validated with experimental data in the wide range of current densities (40–100 mA cm−2), and the results demonstrated good agreement with experiments having an average error within 5% range. In addition, the model requires a modest computational time and power, and, therefore, it can be suitable for application in advanced control-monitoring tools, which are necessary for a long-service life and sustainable operation of VRFB systems.

Keywords: Vanadium Redox Flow Batteries; Dynamic model; Ion crossover; Diffusion, migration and convection; Capacity decay (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918308468
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:226:y:2018:i:c:p:560-569

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.05.124

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:226:y:2018:i:c:p:560-569