EconPapers    
Economics at your fingertips  
 

Optimal placement, sizing, and daily charge/discharge of battery energy storage in low voltage distribution network with high photovoltaic penetration

Mohammad Rasol Jannesar, Alireza Sedighi, Mehdi Savaghebi and Josep M. Guerrero

Applied Energy, 2018, vol. 226, issue C, 957-966

Abstract: Proper installation of rooftop photovoltaic generation in distribution networks can improve voltage profile, reduce energy losses, and enhance the reliability. But, on the other hand, some problems regarding harmonic distortion, voltage magnitude, reverse power flow, and energy losses can arise when photovoltaic penetration is increased in low voltage distribution network. Local battery energy storage system can mitigate these disadvantages and as a result, improve the system operation. For this purpose, battery energy storage system is charged when production of photovoltaic is more than consumers’ demands and discharged when consumers’ demands are increased. Since the price of battery energy storage system is high, economic, environmental, and technical objectives should be considered together for its placement and sizing. In this paper, optimal placement, sizing, and daily (24 h) charge/discharge of battery energy storage system are performed based on a cost function that includes energy arbitrage, environmental emission, energy losses, transmission access fee, as well as capital and maintenance costs of battery energy storage system. All simulations are carried out in DIgSILENT and MATLAB linked together. Results show that by using the proposed approach, overvoltage and energy losses are decreased, reverse power flow is prevented, environmental emission is reduced, and economic profit is maximized.

Keywords: Photovoltaic (PV); Battery energy storage system (BESS); Distribution network; Optimal planning and operation; High penetration (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (45)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918309061
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:226:y:2018:i:c:p:957-966

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.06.036

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:226:y:2018:i:c:p:957-966