EGR control on operation of a tar tolerant HCCI engine with simulated syngas from biomass
Subir Bhaduri,
Hervé Jeanmart and
Francesco Contino
Applied Energy, 2018, vol. 227, issue C, 159-167
Abstract:
In combined heat and power plants operated with biomass syngas, the removal of condensible tars is a necessary but expensive step (up to one third of the installation and maintenance costs). This step is required because the syngas has to be cooled down to avoid knocking in the spark ignition engines traditionally used in such plants. To remove the tar condensation problem, we developed an alternative system based on an Homogeneous Charge Compression Ignition (HCCI) engine operated at intake temperatures above the tar dew point. To address the challenge of power derating of such engine setups, the current paper focuses on the application of Exhaust Gas Recirculation (EGR) as a control parameter that would indirectly allow the improvement of the engine performance. Based on a conservative estimate of tar dew points, HCCI combustion was studied at an intake temperature of 250°C using synthetic biomass syngas and synthetic EGR on a mono-cylinder HCCI engine operated at 1000 RPM. The effects of charge dilution, thermal and kinetic damping due to the EGR gases were also analysed to understand their main effects. The use of EGR successfully increased the maximum achievable Indicated Mean Effective Pressure from 2.5bar at EGR=0% up to 3.3bar at EGR=25%, through damping the maximum pressure rise rate and allowing higher equivalence ratios.
Keywords: Homogeneous Charge Compression Ignition; Biomass syngas; Exhaust Gas Recirculation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917312667
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:227:y:2018:i:c:p:159-167
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.08.233
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().