EconPapers    
Economics at your fingertips  
 

PM2.5 footprint of household energy consumption

Siyuan Yang, Bin Chen, Muhammad Wakeel, Tasawar Hayat, Ahmed Alsaedi and Bashir Ahmad

Applied Energy, 2018, vol. 227, issue C, 375-383

Abstract: Particulate matter 2.5 (PM2.5) as a major hazardous constituent is strongly associated with household energy consumption. In this paper, we investigate the PM2.5 footprint of household energy consumption in Beijing based on input–output analysis. An inventory of primary and secondary household energy consumption is developed to quantify the direct PM2.5 emissions. The household PM2.5 footprint is then traced through goods or services that ultimately consumed by households to unveil the indirect PM2.5 emissions triggered by economic activities. PM2.5 fingerprint is also proposed to describe the characteristic of household PM2.5 footprint. Results show that PM2.5 footprint of Beijing households in 2010 is 7831.36 kt, of which 92.61% is contributed by urban households. The source of direct PM2.5 emissions in urban area is diversified, which is composed of coal (42.07%), heat and electricity (32.83%), gasoline (21.29%), natural gas (3.04%) and liquefied petroleum gas (0.77%), while in rural area, coal (98.09%) plays a dominant role. The indirect PM2.5 accounts for 99.96% of the total footprint in urban area, about one third of which is contributed by sectors of “Food Processing and Production”, “Healthcare and Social Security”, and “Farming, Forestry, Animal Husbandry and Fishery”. The disparity between urban and rural households PM2.5 footprints is further evaluated with income levels. The PM2.5 footprint from living expenditures of urban households is found to be nearly twice as much as that of rural households. Such inventory of PM2.5 footprint and examination of drivers for PM2.5 emissions may be essential for urban pollution mitigation policy.

Keywords: Energy consumption; Air pollution; Input-output analysis; Household PM2.5 footprint (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917316331
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:227:y:2018:i:c:p:375-383

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.11.048

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:227:y:2018:i:c:p:375-383