A CFD decompression model for CO2 mixture and the influence of non-equilibrium phase transition
Bin Liu,
Xiong Liu,
Cheng Lu,
Ajit Godbole,
Guillaume Michal and
Anh Kiet Tieu
Applied Energy, 2018, vol. 227, issue C, 516-524
Abstract:
Carbon Capture and Storage (CCS) is widely seen asan effective technique to reduce what is perceived as excessive CO2 concentration in the atmosphere. This technique includes transporting CO2 from source point to the storage site, usually through high-pressure pipelines. In order to ensure safe transport (i.e. to prevent the contents from being released into the atmosphere), it is important to estimate the required pipe toughness in the design stage. This requires an accurate prediction of the speed of the ‘decompression wave’ in the fluid, which is created when the high-pressure fluid escapes into the ambient. In this paper, a multi-phase Computational Fluid Dynamics (CFD) model is presented to simulate the decompression of high-pressure pipelines carrying CO2 mixtures. A ‘real gas’ Equation of State (EOS), the GERG-2008 EOS, is incorporated into the CFD code to model the thermodynamic properties of the fluid in both liquid and vapour states. The non-equilibrium liquid/vapour transition is modelled by introducing ‘source terms’ for mass transfer and latent heat. The model is validated through simulation of a ‘shock tube’ test. A ‘time relaxation factor’ is used to control the inter-phase mass transfer rate. The measured decompression wave speed is compared with that predicted using different values of the time relaxation factor. It is found that the non-equilibrium phase transition has a significant influence on the decompression wave speed. Also, the effects of delayed bubble formation and of various impurities on the decompression wave speed are investigated.
Keywords: Carbon Capture and Storage; CO2 pipeline; Decompression; CFD modelling; Multi-phase flow; Delayed bubble formation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917313004
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:227:y:2018:i:c:p:516-524
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.09.016
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().