Molecular dynamics simulations of the local structures and transport properties of Na2CO3 and K2CO3
Jing Ding,
Gechuanqi Pan,
Lichan Du,
Jianfeng Lu,
Weilong Wang,
Xiaolan Wei and
Jiang Li
Applied Energy, 2018, vol. 227, issue C, 555-563
Abstract:
Molten alkali carbonates has been researched as one of the most promising thermal energy storage (TES) materials in Concentrating Solar Power (CSP) and received extensive attentions. Some attractive properties must be determined accurately, such as thermal conductivity, and viscosity. over a wide temperature range. However, these significant thermal and transport properties are difficult to be obtained for experiments on account of high-temperature extreme conditions. Molecular dynamics (MD) is an alternative way to predict these properties for molten salts. Systematic results including density, thermal conductivity and shear viscosity as a function of temperature from molecular dynamics simulations of molten alkali carbonates are presented in detail in this paper. Both reverse nonequilibrium molecular dynamics (RNEMD) and nonequilibrium molecular dynamics (NEMD) methods are tried for thermal conductivity and viscosity, and then the results are compared to experimental values. The temperature dependence are investigated and analyzed by correlating transport properties with local structures. The results show that the Tosi-Fumi potential predicts negative temperature dependences for both viscosity and thermal conductivity of the alkali carbonates. The simulation results are in good agreement with the experimental data available in the literature.
Keywords: Molecular dynamics simulation; Molten carbonates; Thermal and transport properties; Local structures (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917308899
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:227:y:2018:i:c:p:555-563
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.07.019
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().