Component-based machine learning for performance prediction in building design
Philipp Geyer and
Sundaravelpandian Singaravel
Applied Energy, 2018, vol. 228, issue C, 1439-1453
Abstract:
Machine learning is increasingly being used to predict building performance. It replaces building performance simulation, and is used for data analytics. Major benefits include the simplification of prediction models and a dramatic reduction in computation times. However, the monolithic whole-building models suffer from a limited transfer of models and their data to other contexts. This imposes a vital limitation on the application of machine learning in building design. In this paper, we present a component-based approach that develops machine learning models not only for a parameterized whole building design, but for parameterized components of the design as well. Two decomposition levels, namely construction level components (wall, windows, floors, roof, etc.), and zone-level components, are examined. Results in test cases show that, depending on how far the cases deviate from the training case and its data, high prediction quality may be achieved with errors as low as 3.7% for cooling and 3.9% for heating.
Keywords: Component-based machine learning; Systems engineering; Parametric systems modeling; Building performance prediction; Building simulation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918310389
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:228:y:2018:i:c:p:1439-1453
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.07.011
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().