EconPapers    
Economics at your fingertips  
 

A test-validated prediction model of thermal contact resistance for Ti-6Al-4V alloy

Yan-Jun Dai, Jian-Jun Gou, Xing-Jie Ren, Fan Bai, Wen-Zhen Fang and Wen-Quan Tao

Applied Energy, 2018, vol. 228, issue C, 1617 pages

Abstract: The precise prediction or test of thermal contact resistance is a key issue on increasing or decreasing thermal energy transmission efficiency between two solids. This paper raises a thermal contact resistance prediction model based on measuring actual surface topography under different loading pressures and different heating temperatures. The actual topography of contact surfaces is measured by a 3-D optical microscope named Bruker Contour GT-K. The contact surfaces are reconstructed with language Python according to the data of surface topography from the microscope and the numerical contact model is generated. Then the thermal contact resistance simulation is implemented with software ABAQUS. Based on the elastic-plastic constitutive equations and steady state heat conduction theory, finite element analysis of mechanical and heat transfer performance of the contact model is performed with ABAQUS in the light of sequential coupling method. The studied material pairs are Ti-6Al-4V—Ti-6Al-4V with three kinds of different interstitial material e.g., vacuum, air and conductive silicone grease. The effect of radiation on thermal contact resistance under air and vacuum atmosphere is further studied and analyzed. Besides, the solid thermal conductivity on thermal contact resistance is investigated. To verify the accuracy of the method, the simulated results from ABAQUS are compared with the experimental results of air gap with the same boundary conditions. The maximum deviation between simulation results and experimental results is 9.57% while 75% of the deviations are within 5%. A correlation of thermal contact conductance with the average contact surface temperature and loading pressure is proposed. The results show that this method has high precision to predict thermal contact resistance in the engineering application.

Keywords: Thermal contact resistance; Numerical simulation; Actual rough surfaces; Experimental measurement; Correlation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918310031
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:228:y:2018:i:c:p:1601-1617

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.06.134

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:228:y:2018:i:c:p:1601-1617