EconPapers    
Economics at your fingertips  
 

Sustainable yarn type-piezoelectric energy harvester as an eco-friendly, cost-effective battery-free breath sensor

Nirmal Prashanth Maria Joseph Raj, Nagamalleswara Rao Alluri, Venkateswaran Vivekananthan, Arunkumar Chandrasekhar, Gaurav Khandelwal and Sang-Jae Kim

Applied Energy, 2018, vol. 228, issue C, 1767-1776

Abstract: A cost-effective layer-by-layer brush-coating technique was developed to fabricate a flexible yarn-based piezoelectric nanogenerator (FY-PNG) to harness abundant waste mechanical energy. A simple sol-gel method was used to synthesize the orthorhombic crystalline phase of bismuth titanate perovskite, i.e., Bi4Ti3O12 (BiTO). A single FY-PNG device generated a maximum peak-to-peak open-circuit voltage (VOC(P–P)), short-circuit current (ISC(P–P)), and instantaneous area power density of 60 V, 400 nA, and 18.5 mW/m2, respectively, upon application of a 1 N periodic mechanical load. The switching polarity of the FY-PNG demonstrated good phase shifting between the output signals and confirmed that the output derived from the device and not from any external sources. The working mechanism, electrical poling effect, force analysis, repeatability, stability, charging, energy storage analysis, and sensitivity to biomechanical force of the FY-PNG was thoroughly investigated. The FY-PNG device output was used to power five commercial green light-emitting diodes (LEDs) and a display system. Additionally, a non-invasive self-powered breathing sensor (SPBS) was developed to monitor human inhalation/exhalation. The repeatability and reproducibility of SPBS evaluated using different devices and test subjects demonstrated a good variation in output (i.e., 0.2–0.4 V) for inhalation/exhalation; the SPBS was also evaluated under slow/fast and constant breathing conditions. The proposed brush-coating technique for FY-PNGs is an efficient, cost-effective, eco-friendly, and easily scalable technique that can pave the way to the design of novel-shaped PNG devices for applications such as implantable self-powered biosensors and automotive electronic systems.

Keywords: Bi4Ti3O12 nanoparticles; Piezoelectric nanogenerator; Self-powered breath monitoring sensor; Sol-gel technique; Polyvinylidene fluoride; Synergistic effect (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918310432
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:228:y:2018:i:c:p:1767-1776

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.07.016

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:228:y:2018:i:c:p:1767-1776