Fuel utilization effects on system efficiency in solid oxide fuel cell gas turbine hybrid systems
Danylo Oryshchyn,
Nor Farida Harun,
David Tucker,
Kenneth M. Bryden and
Lawrence Shadle
Applied Energy, 2018, vol. 228, issue C, 1953-1965
Abstract:
A computational analysis was conducted to optimize the design of a solid oxide fuel cell - gas turbine hybrid power generator, focusing on the impact that fuel utilization within the fuel cell has on system efficiency and installed costs. This is the first ever design-study considering the effect of fuel utilization on performance, as well as on the optimum power split. This hybrid system attained high electric generation efficiencies (>70%) over a wide range of operating conditions (60% < fuel utilization < 90%) while the fuel cell stack size decreased in proportion to decreasing the fuel utilization. A one-dimensional fuel cell model was used to simulate the fuel cell while GateCycle® was used to simulate the performance of the associated recuperated turbine and various subsystems necessary for thermal management. For each test case, the size of the solid oxide fuel cell, gas turbine, and recuperator, as well as the fuel and air flow rates, hot-air bypass set point, and heat exchange effectiveness in the solid oxide fuel cell manifold were varied to obtain 550 MWe output. In addition, anode recycle, turbomachinery efficiency, and various thermal management options were tested. The maximum system efficiency (75.6%) was attained for the single-pass solid oxide fuel cell with highly efficient turbomachinery when the solid oxide fuel cell used 80% of the incoming fuel. Efficiency was essentially flat from 75% fuel utilization through 85% fuel utilization. Employing anode recycle starting at 65% resulted in roughly 1 percentage point efficiency decrease for each percent increase in fuel utilization. For minimized solid oxide fuel cell degradation, a near 50:50 power split case was studied resulting in 68.6% efficiency and the solid oxide fuel cell using 55% of the incoming fuel. Because of shifting half of the power generation to the gas turbine, the size of the fuel cell stack was reduced by 25% as compared to that at maximum efficiency (80% fuel utilization).
Keywords: Advanced power system; Cycle analysis; Hybrid; Solid oxide fuel cell; Gas turbine; Fuel utilization (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918310316
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:228:y:2018:i:c:p:1953-1965
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.07.004
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().