Consequences of selecting technology pathways on cumulative carbon dioxide emissions for the United Kingdom
Simon H. Roberts,
Barney D. Foran,
Colin J. Axon,
Benjamin Warr and
Nigel H. Goddard
Applied Energy, 2018, vol. 228, issue C, 409-425
Abstract:
The UK has an ambitious target of an 80% reduction in carbon dioxide emissions by 2050, to be reached using a series of ‘carbon budgets’ to aid policy development. Current energy systems modelling methods do not explore, or are unable to account for, physical (thermodynamic) limits to the rate of change of infrastructure. The power generation sector has a variety of technological options for this low-carbon transition. We compare physically constrained scenarios that accentuate either carbon capture and storage, fastest plausible nuclear new build, or fastest plausible build rate of offshore wind. We set these in the context of the UK’s legislated fifth carbon budget, which has a comprehensive range of carbon reduction measures with respect to business-as-usual. The framework for our scenario comparison uses our novel system dynamics model to substantiate the policy’s ability to meet 2035 emissions targets while maintaining financial productivity and socially expected employment levels. For an ambitious nuclear new build programme we find that even if it stays on track it is more expensive than offshore wind generation and delays emissions reductions. This affects the cumulative emissions and impacts on the UK’s ability to contribute to international climate change targets. If delays or cancellation occur to the deployment programmes of carbon capture and storage technologies or nuclear new build, we suggest the electricity and decarbonisation targets can by met by a fast growth of offshore wind generation with no change to financial and employment levels.
Keywords: Low-carbon transition; CCS; Nuclear new build; Offshore wind generation; System dynamics (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918309486
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:228:y:2018:i:c:p:409-425
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.06.078
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().