Effect of biomass type, heating rate, and sample size on microwave-enhanced fast pyrolysis product yields and qualities
Jordan L. Klinger,
Tyler L. Westover,
Rachel M. Emerson,
C. Luke Williams,
Sergio Hernandez,
Glen D. Monson and
J. Chadron Ryan
Applied Energy, 2018, vol. 228, issue C, 535-545
Abstract:
The products from fast pyrolysis of biomass are variable and highly dependent upon feedstock composition, particle size and geometry, and operating conditions such as heating rate, reaction temperature, and sweep gas composition and velocity. Microwave heating is internal to the biomass particles, thereby avoiding convective and conductive heat transfer limitations, which facilitates decoupling heat transfer effects from chemical reaction kinetics. This separation allows for elucidation of the primary effects of the original materials’ composition on product yields. To better understand the interconnectedness of biomass composition and fast pyrolysis (pyrolysis liquid oil yield in particular), a high throughput microwave-enhanced fast pyrolysis (MEFP) reactor was used to react 33 biomass samples with a minimum of three replicate tests each. The materials in this study included: woody feedstocks (with and without bark), agricultural residues, herbaceous energy crops, and blended feedstocks. The highest liquid yields were obtained from lumber (66.2 wt%) and tulip poplar (64.9 wt%), while the lowest yields were obtained from sorghum (47.8 wt%) and single-pass harvested corn stover (48.5 wt%). Liquid yields had an average standard deviation of 1.4 wt% (average 2.5% relative standard deviation). The MEFP achieved heating rates up to 200 °C/s, however, beyond 10 °C/s liquid oil plateaued with increasing heating rate. Multivariate regression of pyrolysis yields with over 20 feedstock properties, obtained through detailed compositional analysis, indicates that aggregated alkali and alkaline Earth metals (primarily K and Na, along with Ca and Mg) accounted for the most variability among liquid yields (R2 = 0.71). Addition of volatile matter as a second predictor variable achieved the greatest reduction of the model residuals to increase the coefficient of regression (R2) to 0.85. Liquid yield water fraction increased linearly with feedstock potassium and sodium content over a much wider range than previously observed. Pyrolysis oil acid content was found to increase with increasing volatile matter and decreasing potassium and sodium content.
Keywords: Fast pyrolysis; Biomass composition; Heating rate; Microwave heating; Feedstock screening; Oil yield (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918309772
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:228:y:2018:i:c:p:535-545
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.06.107
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().