EconPapers    
Economics at your fingertips  
 

A novel data-driven scenario generation framework for transmission expansion planning with high renewable energy penetration

Mingyang Sun, Jochen Cremer and Goran Strbac

Applied Energy, 2018, vol. 228, issue C, 546-555

Abstract: Transmission expansion planning (TEP) is facing unprecedented challenges with the rise of integrated renewable energy resources (RES), flexible load elements, and the potential electrification of transport and heat sectors. Under this reality, the inadequate information of the stochastic parameters’ behavior may lead to inefficient expansion decisions, especially in the context of very high renewable penetration. This paper proposes a novel data-driven scenario generation framework for the TEP problem to generate unseen but important load and wind power scenarios while capturing inter-spatial dependencies between loads and wind generation units’ output in various locations, using a vine-copula based high-dimensional stochastic variable modeling approach. The superior performance of the proposed model is demonstrated through a case study on a modified IEEE 118-bus system. The expected result of using the expected value problem solution (EEV) and the net benefits of transmission expansion (NBTE) are used as the evaluation metrics to quantitatively illustrate the advantages of the proposed approach. In addition, the case of very high wind penetration is carried out to further highlight the importance of the multivariate stochastic dependence of load and wind power generation. The results demonstrate that the proposed scenario generation method can result in near-optimal investment decisions for the TEP problem that make more net benefits than using limited number of historical data.

Keywords: Renewable energy resources; Multivariate dependence; Scenario generation; Wind power; Transmission expansion planning; Vine copulas (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918309656
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:228:y:2018:i:c:p:546-555

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.06.095

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:228:y:2018:i:c:p:546-555