Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components
Dongsheng Ren,
Xiang Liu,
Xuning Feng,
Languang Lu,
Minggao Ouyang,
Jianqiu Li and
Xiangming He
Applied Energy, 2018, vol. 228, issue C, 633-644
Abstract:
Thermal runaway (TR) is a major safety concern in lithium-ion batteries. Model-based TR prediction is critically needed to optimize safety designs of cells. This paper presents a novel scheme for developing reliable battery TR model from kinetics analysis of cell components. First, differential scanning calorimetry (DSC) tests on the individual cell components and their mixtures are conducted to reveal the TR mechanism and characterize the exothermic reactions, of which the major six (such as the decomposition of solid electrolyte interface (SEI) film) are determined as the dominant heat sources. The kinetics parameters of each exothermic reactions are identified from the DSC tests results at variant heating rates using Kissinger’s method and nonlinear fitting method. A predictive battery TR model is established by superimposing the chemical kinetics equations of the six exothermic reactions. The model fits well with the adiabatic TR test results and the oven tests results of a 24 Ah lithium-ion battery, indicating that the model can well reflect the battery TR mechanism and be trusted to predict battery safety performance without assembling a real battery.
Keywords: Lithium-ion battery; Battery safety; Thermal runaway; Kinetics analysis; Differential scanning calorimetry (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (31)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918309954
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:228:y:2018:i:c:p:633-644
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.06.126
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().