EconPapers    
Economics at your fingertips  
 

Numerical modeling of oxy-methane combustion in a model gas turbine combustor

Mohammad Raghib Shakeel, Yinka S. Sanusi and Esmail M.A. Mokheimer

Applied Energy, 2018, vol. 228, issue C, 68-81

Abstract: There is a renewed interest in oxy-fuel combustion of natural gas for reduction of greenhouse gas emissions. This has necessitated various experimental and numerical studies of oxy-fuel combustion. In the numerical combustion study, the radiation model and combustion chemistry are critical for accurate numerical predictions of oxy-fuel combustion characteristics. In this study, three global reaction mechanisms: Westbrook-Dryer (3 equations), Jones-Lindstedt (5 equations) and Jones-Lindstedt (7 equations) for oxy-methane combustion were combined with different weighted sum of gray gas radiation models (WSGGM) available in the literature to determine the most accurate combination for oxy-methane combustion modeling and simulation. Experiments were conducted in a non-premixed swirl stabilized model gas turbine combustor at a firing rate of 4 MW/m3-bar while varying the percentage of CO2 in the oxidizer (O2/CO2) mixture. Numerical model developed using ANSYS FLUENT 17 code was validated against the experimental results. The combinations of Jones-Lindstedt (5 equations) reaction mechanism and WSGGM model proposed by Bordbar gave the closest approximation of the flame temperature with an average deviation of 5.52%. The model combination also predicted the flame attachment to the fuel nozzle and flame lift-off at a high CO2 percentage in the oxidizer mixture. The results of the parametric study on the effect of CO2 percentage in the oxidizer mixture, combustor energy level and equivalence ratio on the combustion characteristics and CO emissions were also reported. The CO emissions monotonically increases with increasing percentage of CO2 in the oxidizer due to decreased residence time and the reduction in the flame temperature. While the CO emission increases with the energy level in the combustor up to 3.5 MW/m3 and decreases thereafter. The optimum equivalence ratio for minimum CO emission is 0.98 with approximately 2 PPM at 40% CO2 in the oxidizer.

Keywords: Oxy-methane combustion; Numerical modeling; Radiation modeling; CO emission (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918309413
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:228:y:2018:i:c:p:68-81

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.06.071

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:228:y:2018:i:c:p:68-81