Assessing the benefits of demand-side flexibility in residential and transport sectors from an integrated energy systems perspective
Pei-Hao Li and
Steve Pye
Applied Energy, 2018, vol. 228, issue C, 965-979
Abstract:
Demand-side flexibility from smart appliances and passenger electric vehicles has been increasingly regarded in recent years as an effective measure to reduce peak loads and to aid system balancing. While numerous studies have been undertaken to investigate the benefits of demand-side flexibility, most have either focused only on the power sector or provided a snapshot for a future year or day. The influence of interactions between sectors in the long-term under energy transition pathways has therefore been under explored. This paper presents a novel modelling approach in a whole energy systems model, UK TIMES, to investigate the benefits of demand-side flexibility from smart appliances and passenger electric vehicles, including the reduction in the costs of moving to a low carbon economy. This analysis shows that demand-side control increases system flexibility, enabling the integration of high levels of low carbon power, such as nuclear and wind, whilst reducing the requirements for storage. By 2050, the peak load is reduced by around 7 GW (9%), and cumulatively about 30.9 billion GBP saved with the help of this demand-side flexibility. This approach could be integrated into other energy systems models to improve the representation of this important flexibility mechanism.
Keywords: Demand-side response; Smart appliance; Electric vehicle; Flexibility; TIMES (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (38)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918310237
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:228:y:2018:i:c:p:965-979
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.06.153
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().