EconPapers    
Economics at your fingertips  
 

Hybrid probabilistic-possibilistic approach for capacity credit evaluation of demand response considering both exogenous and endogenous uncertainties

Bo Zeng, Xuan Wei, Dongbo Zhao, Chanan Singh and Jianhua Zhang

Applied Energy, 2018, vol. 229, issue C, 186-200

Abstract: As a featured smart-grid technology, demand response (DR) provides utility companies with unprecedented flexibility to improve the reliability of electricity service in future power systems. However, due to the uncertainties arising from the demand side, the extent to which DR can be utilized for capacity support poses a major question to the utilities. To address this issue, this paper proposes a new methodological framework to assess the potential reliability value of DR in smart grids. The framework is established on the concept of capacity credit (CC), and it accommodates different types of uncertainties (i.e., probabilistic and possibilistic) accrued from physical and anthropogenic factors in DR programs. The capability of DR during operation is considered as a synthesized result of multiple facets, i.e., users’ load characteristics, participation levels, and load recoveries, and different models are developed to represent each component. To characterize the stochastic nature of demand responsiveness, the fuzzy theory is introduced, and possibilistic models are proposed to describe the human-related uncertainties under incomplete information. In addition, considering that in reality, DR operation could affect the comfort of customers, the dynamics of demand-side participation have also been incorporated in our study, in which two utility-based indices are defined to quantify the effect of such interdependency. Using a probabilistic propagation technique, the different types of uncertainties involved can be normalized and systematically addressed under the same framework. Then, the relevant models can be applied to the CC evaluation procedures, wherein two dispatching schemes (i.e., reliability-driven and coordinated management) are considered to study the effect of DR operation on its CC. The proposed methodology is tested on a modified RTS system, and the obtained results confirm its effectiveness.

Keywords: Demand response; Capacity credit; Operating reserve; Generation capacity adequacy; Probabilistic-possibilistic modeling; Endogenous uncertainties (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918311462
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:229:y:2018:i:c:p:186-200

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.07.111

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:229:y:2018:i:c:p:186-200