EconPapers    
Economics at your fingertips  
 

Data-driven multi-objective optimisation of coal-fired boiler combustion systems

Alma A.M. Rahat, Chunlin Wang, Richard M. Everson and Jonathan E. Fieldsend

Applied Energy, 2018, vol. 229, issue C, 446-458

Abstract: Coal remains an important energy source. Nonetheless, pollutant emissions – in particular Oxides of Nitrogen (NOx) – as a result of the combustion process in a boiler, are subject to strict legislation due to their damaging effects on the environment. Optimising combustion parameters to achieve a lower NOx emission often results in combustion inefficiency measured with the proportion of unburned coal content (UBC). Consequently there is a range of solutions that trade-off efficiency for emissions. Generally, an analytical model for NOx emission or UBC is unavailable, and therefore data-driven models are used to optimise this multi-objective problem. We introduce the use of Gaussian process models to capture the uncertainties in NOx and UBC predictions arising from measurement error and data scarcity. A novel evolutionary multi-objective search algorithm is used to discover the probabilistic trade-off front between NOx and UBC, and we describe a new procedure for selecting parameters yielding the desired performance. We discuss the variation of operating parameters along the trade-off front. We give a novel algorithm for discovering the optimal trade-off for all load demands simultaneously. The methods are demonstrated on data collected from a boiler in Jianbi power plant, China, and we show that a wide range of solutions trading-off NOx and efficiency may be efficiently located.

Keywords: Evolutionary multi-objective optimization under uncertainty; Coal combustion optimisation; NOx; Unburned carbon content in fly ash; Gaussian processes; Probabilistic dominance (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191831136X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:229:y:2018:i:c:p:446-458

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.07.101

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:229:y:2018:i:c:p:446-458