EconPapers    
Economics at your fingertips  
 

A novel solar-powered liquid piston Stirling refrigerator

Samuel Langdon-Arms, Michael Gschwendtner and Martin Neumaier

Applied Energy, 2018, vol. 229, issue C, 603-613

Abstract: The objective of this research project is to develop a solar-powered refrigerator in the lower capacity range of up to 5 kW of cooling power. With the use of liquid pistons and one of the most efficient thermodynamic cycles known, the Stirling cycle, this product has the potential to outperform rival solar cooling technologies while providing inexpensive, reliable, quiet, environmentally-friendly, and efficient solar cooling for residential use, due to its straightforward manufacturing, simple design and inert working gas. Presented in this paper are the newest results of the theoretical and experimental investigation into deducing the key design parameters and system configuration of the so-called Liquid Piston Stirling Cooler (LPSC), which will help lead to optimal performance. Computer models of the complex unconstrained system have been constructed and validated using the modelling software Sage and shown to replicate system behavior with reasonable accuracy in experiments. The models have been used to predict system improvements and identify limitations imposed by the use of liquid pistons. The results to date provide a unique insight into a relatively little studied area in Stirling cycle research.

Keywords: Stirling cycle; Refrigeration; Liquid pistons; Renewable energy; Solar heating and cooling; Free-pistons; Sage (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918311954
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:229:y:2018:i:c:p:603-613

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.08.040

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:229:y:2018:i:c:p:603-613