EconPapers    
Economics at your fingertips  
 

Numerical study on the mechanical stress and mechanical failure of planar solid oxide fuel cell

Xiurong Fang and Zijing Lin

Applied Energy, 2018, vol. 229, issue C, 63-68

Abstract: Damage by mismatch of thermal expansion coefficients and temperature gradient is a major factor limiting the long-term stability of solid oxide fuel cell (SOFC). Numerical simulations are performed to provide in-depth information about the mechanical stress, mechanical failure probability and creep strain rate of planar SOFC. The dependences of the mechanical performance of SOFC on the Ni content and its oxidation state as well as the temperature (T) are revealed. Based on a realistic T-profile obtained by multi-physics simulation of a SOFC stack model, it is shown that the maximum creep strain rate of the operating stack is 40% higher than that of an isothermal stack with the same average T. A T-distribution deduced from a multi-physics fully coupled model is essential for a reliable prediction of the creep rate and the corresponding lifetime of an operating stack.

Keywords: Mechanical property; Thermal stress; Porous composite material; Failure probability; Creep strain rate (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918311085
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:229:y:2018:i:c:p:63-68

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.07.077

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:229:y:2018:i:c:p:63-68