Surge prevention for gas turbines connected with large volume size: Experimental demonstration with a microturbine
Mario L. Ferrari,
Paolo Silvestri,
Federico Reggio and
Aristide F. Massardo
Applied Energy, 2018, vol. 230, issue C, 1057-1064
Abstract:
The aim of this work is the demonstration of a surge prevention technique for advanced gas turbine cycles. There is significant surge risk in dynamic operation for turbines connected with large volume size additional components, such as a fuel cell stack, a saturator, a solar receiver or a heat exchanger for external combustion. In comparison with standard gas turbines, the volume size generates different behaviour during dynamic operations (with significant surge risk), especially considering that such additional components are including important dynamic constraints.
Keywords: Large volume; Gas turbine; Dynamic operation; Surge prevention; Sub-synchronous vibrations (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918313862
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:230:y:2018:i:c:p:1057-1064
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.09.075
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().