EconPapers    
Economics at your fingertips  
 

Surge prevention for gas turbines connected with large volume size: Experimental demonstration with a microturbine

Mario L. Ferrari, Paolo Silvestri, Federico Reggio and Aristide F. Massardo

Applied Energy, 2018, vol. 230, issue C, 1057-1064

Abstract: The aim of this work is the demonstration of a surge prevention technique for advanced gas turbine cycles. There is significant surge risk in dynamic operation for turbines connected with large volume size additional components, such as a fuel cell stack, a saturator, a solar receiver or a heat exchanger for external combustion. In comparison with standard gas turbines, the volume size generates different behaviour during dynamic operations (with significant surge risk), especially considering that such additional components are including important dynamic constraints.

Keywords: Large volume; Gas turbine; Dynamic operation; Surge prevention; Sub-synchronous vibrations (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918313862
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:230:y:2018:i:c:p:1057-1064

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.09.075

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:230:y:2018:i:c:p:1057-1064