A combination forecasting approach applied in multistep wind speed forecasting based on a data processing strategy and an optimized artificial intelligence algorithm
Zhongshan Yang and
Jian Wang
Applied Energy, 2018, vol. 230, issue C, 1108-1125
Abstract:
Owing to the complexity and uncertainty of wind speed, accurate wind speed prediction has become a highly anticipated and challenging problem in recent years. Researchers have conducted numerous studies on wind speed prediction theory and practice; however, research on multi-step wind speed prediction remains scarce, which hinders further development in this area. To improve upon the accuracy and stability of multi-step wind speed prediction, this paper proposes a combination model based on a data preprocessing strategy, an improved optimization model, a no negative constraint theory, and several single prediction models. To improve upon forecasting performance, an improved water cycle algorithm based on a quasi-Newton algorithm is proposed to optimize the weight coefficients of the single models. In the empirical research, 10-min and 30-min wind speed data from Shandong Province in China, collected for case studies, were used to assess the comprehensive performance of the proposed combination model. Finally, we used 10-fold cross-validation and multiple error criteria to evaluate the comprehensive performance of the proposed combination model. The simulation results indicate that (a) the quasi-Newton algorithm can effectively increase the diversity of the water cycle algorithm particles, resulting in improved water cycle algorithm optimization performance; (b) the combination model exhibits superior predictive performance to a single model by taking advantage of each single model; and (c) the proposed combination model can effectively improve multi-step wind speed prediction results.
Keywords: Wind speed forecasting; Complementary ensemble empirical model; Modified water cycle algorithm; Broyden family; Combination model (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (47)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918313461
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:230:y:2018:i:c:p:1108-1125
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.09.037
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().