EconPapers    
Economics at your fingertips  
 

A combination forecasting approach applied in multistep wind speed forecasting based on a data processing strategy and an optimized artificial intelligence algorithm

Zhongshan Yang and Jian Wang

Applied Energy, 2018, vol. 230, issue C, 1108-1125

Abstract: Owing to the complexity and uncertainty of wind speed, accurate wind speed prediction has become a highly anticipated and challenging problem in recent years. Researchers have conducted numerous studies on wind speed prediction theory and practice; however, research on multi-step wind speed prediction remains scarce, which hinders further development in this area. To improve upon the accuracy and stability of multi-step wind speed prediction, this paper proposes a combination model based on a data preprocessing strategy, an improved optimization model, a no negative constraint theory, and several single prediction models. To improve upon forecasting performance, an improved water cycle algorithm based on a quasi-Newton algorithm is proposed to optimize the weight coefficients of the single models. In the empirical research, 10-min and 30-min wind speed data from Shandong Province in China, collected for case studies, were used to assess the comprehensive performance of the proposed combination model. Finally, we used 10-fold cross-validation and multiple error criteria to evaluate the comprehensive performance of the proposed combination model. The simulation results indicate that (a) the quasi-Newton algorithm can effectively increase the diversity of the water cycle algorithm particles, resulting in improved water cycle algorithm optimization performance; (b) the combination model exhibits superior predictive performance to a single model by taking advantage of each single model; and (c) the proposed combination model can effectively improve multi-step wind speed prediction results.

Keywords: Wind speed forecasting; Complementary ensemble empirical model; Modified water cycle algorithm; Broyden family; Combination model (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (47)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918313461
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:230:y:2018:i:c:p:1108-1125

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.09.037

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:230:y:2018:i:c:p:1108-1125