EconPapers    
Economics at your fingertips  
 

Development of an efficient thermal management system for Vanadium Redox Flow Battery under different charge-discharge conditions

Ankur Bhattacharjee and Hiranmay Saha

Applied Energy, 2018, vol. 230, issue C, 1182-1192

Abstract: The temperature rise inside VRFB stack may exceed its safe limit at higher charging and discharging currents leading to thermal precipitation. A thermal management and control model of VRFB is developed in this paper for the first time in MATLAB/Simulink environment and experimentally validated in the lab. Online monitoring of VRFB stack temperature and flow rate control is executed by dsPIC microcontroller platform. The usual practice of applying higher flow rate by increasing pump speed during charging and discharging operations for keeping the stack temperature within safe limit leads to reduction of overall VRFB system efficiency due to higher pump power loss. In this work a model for determining the dynamic optimal flow rate is developed to ensure efficient thermal management and improvement of overall system efficiency of VRFB. The proposed thermal management scheme is validated by a practical 1 kW 6 h VRFB system operation. It is observed that at a lower flow rate of 180 ml/sec the stack temperature during fast charging and discharging at the rate of 60A rises up to 47 °C which is well above the specified safe limit of operating temperature of VRFB and leads to incomplete charging due to premature thermal shut down of the system. Increasing the flow rate to 300 ml/sec keeps the stack temperature within safe limit but the overall VRFB efficiency becomes around 83%. However, by applying dynamic optimal flow rate (160–300 ml/sec) over the range of SOC (10–90%), this is managed within the safe level of 35.8 °C and at the same time improving the overall VRFB system efficiency up to 88.55%. The model performance shows very good agreement with the experimental results having maximum error of 0.85%. The thermal management and control scheme demonstrated in this paper is a generalised one and hence very useful for large scale VRFB applications as well.

Keywords: Vanadium Redox Flow Battery; Stack current; Battery temperature; Flow rate; System efficiency (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918313424
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:230:y:2018:i:c:p:1182-1192

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.09.056

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:230:y:2018:i:c:p:1182-1192