Energy storage sizing methodology for mass-transit direct-current wayside support: Application to French railway company case study
Andres Ovalle,
Julien Pouget,
Seddik Bacha,
Laurent Gerbaud,
Emmanuel Vinot and
Benoît Sonier
Applied Energy, 2018, vol. 230, issue C, 1673-1684
Abstract:
In the context of direct-current electrified railway systems, power supply quality issues are a major concern for the railway network operators. Indeed, after signaling systems and track equipment, voltage issues may be the most challenging factor for the capacity of a direct-current railway line. These issues and the high cost of new substations motivate the implementation of wayside energy storage systems to support the system. Since an appropriate sizing methodology is a key step towards an energy storage system implementation in a railway line, in this paper a sizing methodology is presented in detail. As hypothesis, the sizing methodology is defined such that the storage system is able to support the railway line under projected conditions of the rolling stock traffic, along with other technical criteria relevant to the railway operator. A real-time simulation oriented, direct-current railway network modeling approach is proposed and exploited in this sizing methodology. Using this modeling method, the optimal energy storage sizing formulation is described. The objective function to minimize is the trade-off between energy storage capacity and charging power. The proposed sizing method is applied to a real railway line with known power supply quality issues. This case study is introduced by analyzing real voltage measurements on two key sites of the line over several days. Then, the sizing methodology is applied and the results are discussed for the study case, defining the minimal technical requirements to install. The obtained minimal technical requirements for the storage system are considered by the operator to take a cost-effective decision in contrast with the reinforcement of the line with new substations.
Keywords: Railway power supply support; Wayside voltage support; Direct-current railway electric network modeling; Optimal energy storage sizing; French direct-current railway system; Data assimilation in sizing method (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918313436
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:230:y:2018:i:c:p:1673-1684
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.09.035
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().