The impact of electric vehicle penetration and charging patterns on the management of energy hub – A multi-agent system simulation
Haiyang Lin,
Yiling Liu,
Qie Sun,
Rui Xiong,
Hailong Li and
Ronald Wennersten
Applied Energy, 2018, vol. 230, issue C, 189-206
Abstract:
In this paper, a multi-agent system (MAS) was developed to simulate the operation of an energy hub (EH) with different penetration rates (PRs) and various charging patterns of electric vehicle (EV). Three charging patterns, namely uncontrolled charging pattern (UCP), rapid charging pattern (RCP) and smart charging pattern (SCP), together with vehicle to grid (V2G), were simulated in the MAS. The EV penetration rates (EV-PRs), from 10% to 90% with a step of 20%, are considered in this study. Under the UCP, the peak load increases by 3.4–17.1% compared to the case without EVs, which is the reference case in this study. A main part of the increased electricity demand can be supplied by the gas turbine (GT) when the PR is lower, i.e. 71.7% under 10% PR and 37.4% under 50% PR. Under the SCP, the charging load of EVs is shifted to the valley period and thus the energy dispatch of the EH at 07:00–23:00 remain the same as that in the reference case. When V2G is considered, the electricity demand from the grid becomes the largest in all of the cases, e.g. the demand with 50% PR doubles the electricity demand in the reference case. However, the GT output decreases by 2.9–15.7% at 07:00–23:00 due to the effect of V2G. The variations in the EH’s operation further raise the changes in energy cost, i.e. the electricity and cooling prices are lowered by 18.3% and 33.8% due to the availability of V2G and the heating and cooling prices increase by 3.5% and 4.3% under the UCP with the PR of 50%. Regarding the V2G capacity, near 39% of the EVs’ battery capacity can be discharged via V2G. In addition, the paper also produced a V2G potential line, which is an effective tool to provide the maximum potential of the EVs for peak shaving at any specific time.
Keywords: Multi-agent system; Electric vehicle; Charging pattern; Penetration rate; Energy hub (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918312327
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:230:y:2018:i:c:p:189-206
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.08.083
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().