Demand side management in urban district heating networks
Hanmin Cai,
Charalampos Ziras,
Shi You,
Rongling Li,
Kristian Honoré and
Henrik W. Bindner
Applied Energy, 2018, vol. 230, issue C, 506-518
Abstract:
This paper proposes a realistic demand side management mechanism in an urban district heating network (DHN) to improve system efficiency and manage congestion issues. Comprehensive models including the circulating pump, the distribution network, the building space heating (SH) and domestic hot water (DHW) demand were employed to support day-ahead hourly energy schedule optimization for district heating substations. Flexibility in both SH and DHW were fully exploited and the impacts of both weekly pattern and building type were modelled and identified in detail. The energy consumption scheduling problem was formulated for both the individual substations and the district heating operator. Three main features were considered in the formulation: user comfort, the heat market and network congestion. A case study was performed based on a representative urban DHN with a 3.5 MW peak thermal load including both residential and commercial buildings. Results show an up to 11% reduction of energy costs. A sensitivity analysis was conducted which provides decision makers with insights into how sensitive the optimum solution is to any changes in energy, user comfort or pumping costs.
Keywords: Smart energy systems; 4th generation district heating; Demand side management; Data-driven modelling; Congestion; Energy flexibility (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (42)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918312765
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:230:y:2018:i:c:p:506-518
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.08.105
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().