Model predictive control for building loads connected with a residential distribution grid
Amin Mirakhorli and
Bing Dong
Applied Energy, 2018, vol. 230, issue C, 627-642
Abstract:
Aggregated control of electrical loads in a large cluster of buildings has been a challenge due to the complexity of the system involving generators, grid constraints, load serving entities complex load models, and people behavior. This paper introduces a novel load aggregation method in an electricity distribution system with Model Predictive Controlled (MPC) loads. This method closes the control loop from power generation to people behavior, resulting in a more stable and efficient integrated buildings-to-grid system. A behavior-driven price-based MPC is introduced for a residential building energy management system, which controls the air conditioner (AC), electric vehicle (EV), water heater, and battery energy storage system. A nodal pricing method is introduced representing power generation and distribution costs, which is mathematically proven to stabilize the system with MPC controlled loads. The method is tested in a 342-node residential building distribution network with 15,000 buildings which is inverse sampled from hundreds of actual smart meter data. The results show a 21% reduction in generation cost, 17% reduction in peak load, and reduced nodal voltage drop from the coordinated control system.
Keywords: Model predictive control; Buildings-to-grid integration; Dynamic price; Distribution network; Residential buildings (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918312066
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:230:y:2018:i:c:p:627-642
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.08.051
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().