Membrane distillation hybridized with a thermoelectric heat pump for energy-efficient water treatment and space cooling
Yong Zen Tan,
Le Han,
Nick Guan Pin Chew,
Wai Hoong Chow,
Rong Wang and
Jia Wei Chew
Applied Energy, 2018, vol. 231, issue C, 1079-1088
Abstract:
The current concept for cooling the indoors is far from ideal with respect to the total energy consumed and waste discharged. A novel concept for improving the energy efficiency is proposed via hybridizing the heat pump with a membrane distillation (MD) unit for simultaneous space cooling and water treatment. MD is well-acknowledged for utilizing low-quality waste heat for water treatment, which makes it feasible for coupling with a heat pump to make use of both the hot and cold reservoirs of the pump. Accordingly, the objective of the current effort was to investigate via experiments the efficacy of a thermoelectric heat pump coupled with a sweep-gas MD system (T-SGMD) by measuring the cooling capacity, condensate production and power consumption. The results from this study can be extended to other heat pumps. Three key highlights emanated from this study. Firstly, condensate production per unit energy consumed can be doubled with the T-SGMD system relative to thermoelectric dehumidification alone. Secondly, cool air recycle affected the condensate flux the most without a drastic loss of cooling compared to other tested parameters during the operation of the T-SGMD. Lastly, the T-SGMD system was able to provide an increase in condensate produced per unit energy without a loss in cooling capacity per unit energy input. These advantages of coupling heat pumps with MD, leveraging on the current advancements in MD, is promising for a hybridized system for decentralized water treatment, dehumidification and space cooling.
Keywords: Sweep-gas membrane distillation (SGMD); Hybrid membrane process; Space cooling; Natural convection; Module orientation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918315071
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:231:y:2018:i:c:p:1079-1088
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.09.196
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().