Fast and experimentally validated model of a latent thermal energy storage device for system level simulations
R. Waser,
F. Ghani,
S. Maranda,
T.S. O'Donovan,
P. Schuetz,
M. Zaglio and
J. Worlitschek
Applied Energy, 2018, vol. 231, issue C, 116-126
Abstract:
Latent storages utilising phase change materials (PCM) to store thermal energy offer a considerably higher energy density at a nearly constant temperature level in comparison to sensible storage systems. Despite this advantage, only a few latent storage technologies have been integrated successfully to the market. This may be due several engineering challenges and in particular the lack of a computationally fast and accurate mathematical model to facilitate the optimal incorporation of latent heat storages into an energy system. The presented study fills this gap and proposes a new, fast and experimentally validated mathematical modelling approach for latent heat storage units. The numerical model proposed combines high accuracy, low computational effort and numerical stability. The validation was performed with two different commercial latent storage units supplied by Sunamp Ltd. with a nominal phase change temperatures of 34 °C and of 58 °C. Both units use a salt hydrate based phase change material in combination with a fin-tube heat exchanger. The proposed model may be used for both fast system level performance investigations as well as latent storage design for a given application. It may therefore be implemented in commercial software packages such as TRNSYS [1] or Simulink [2].
Keywords: Latent thermal energy storage; Numerical model; Thermal characterisation; Phase change material; Energy system simulations (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918313692
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:231:y:2018:i:c:p:116-126
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.09.061
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().