EconPapers    
Economics at your fingertips  
 

An optimization model for carbon capture utilization and storage supply chain: A case study in Northeastern China

Shuai Zhang, Linlin Liu, Lei Zhang, Yu Zhuang and Jian Du

Applied Energy, 2018, vol. 231, issue C, 194-206

Abstract: In recent years, several strategies have been developed and adopted in a bid to diminish the carbon dioxide (CO2) released into the atmosphere. Carbon capture, utilization and storage (CCUS) system is one of the options. In this paper, we develop a CCUS supply chain superstructure by introducing more comprehensive transportation routes as well as the resultant system deployment schemes. A mixed integer linear programming (MILP) model is proposed to optimize the strategic CCUS deployment in Northeast China by making simultaneous selection of emission sources, capture facilitates, CO2 pipeline, intermediate transportation sites, utilization and storage sites. The CCUS cost includes the cost of flue gas dehydration, CO2 capture, transportation and injection, and revenue from CO2 utilization through enhanced oil recovery (CO2-EOR). The overall network is economically optimized over a 20 years’ life span to provide the geographic distribution and scale of capture, utilization and sequestration sites as well as the transportation routes for different scenarios. The results suggest that it is economic feasible to reduce 50% of the current CO2 emissions from the stationary sources at a total annual cost $2.30 billion accompanied with $0.77 billion of revenue generated annually through CO2-EOR. Overall, the optimal CCUS supply chain network correspond to a net cost of $23.53 per ton of CO2. The results are compared with source-sink model and it can be observed that the total annualized net cost is reduced from $1.62 billion to $1.53 billion and the transportation cost are reduced from $0.27 billion to $0.19 billion.

Keywords: Carbon capture utilization and storage (CCUS); Supply chain optimization; Mixed integer linear programming (MILP); CO2 emission reduction; CO2 pipeline (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918314405
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:231:y:2018:i:c:p:194-206

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.09.129

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:231:y:2018:i:c:p:194-206