EconPapers    
Economics at your fingertips  
 

Computational performance analysis of overheating mitigation measures in parked vehicles

V. Soulios, R.C.G.M. Loonen, V. Metavitsiadis and J.L.M. Hensen

Applied Energy, 2018, vol. 231, issue C, 635-644

Abstract: Parked vehicles have the tendency to overheat quickly. This can lead to a negative impact on the thermal comfort of the driver and its passengers, as well as intensive use of air conditioning systems, and thus fuel consumption of the vehicle or, in the case of electric mobility, a reduced cruising range. In the search for effective measures to mitigate this effect, important guidance can be provided by the field of sustainable building design. On the one hand, inspiration can come from design strategies in terms of shapes and advanced cover materials, but this paper advocates that this can also pertain to the simulation-based design support tools that are used by building engineers. This paper first presents the results of a thermal soak test, and then uses this data to demonstrate the suitability of the building performance simulation tool EnergyPlus for predicting the thermal behavior of parked vehicles. This fit-for-purpose validated model is used to evaluate the performance of three overheating mitigation measures for two car models in two climates. The results show that spectrally selective glazing can reduce the cabin air temperature by 12.5 °C and when combined with solar reflective opaque surfaces, the reduction of cabin air temperature can reach 23.8 °C. Increased use of building performance simulation in the automotive domain can help to further optimize the overheating reduction potential of cars.

Keywords: Overheating; Thermal soak test; Vehicle modeling; Building performance simulation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918314600
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:231:y:2018:i:c:p:635-644

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.09.149

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:231:y:2018:i:c:p:635-644