Islanding detection technique using Slantlet Transform and Ridgelet Probabilistic Neural Network in grid-connected photovoltaic system
Masoud Ahmadipour,
Hashim Hizam,
Mohammad Lutfi Othman,
Mohd Amran Mohd Radzi and
Avinash Srikanta Murthy
Applied Energy, 2018, vol. 231, issue C, 645-659
Abstract:
In this paper, a new islanding detection technique is proposed for a three-phase grid connected photovoltaic inverter system using the multi-signal analysis method. The proposed strategy is divided into two steps: first step, all possible grid faults, switching transients and islanding events are simulated and the essential detection parameters are measured. By means of the Slantlet Transform theory, the energy, mean value, minimum, maximum, range, standard deviation and log energy entropy at any decomposition level of Slantlet Transform for parameter detection is computed and the best of them are selected as input data of second step. Second step, an advanced machine learning based on Ridgelet Probabilistic Neural Network is utilized to predict islanding and none islanding states. In order to train Ridgelet Probabilistic Neural Network, a modified differential evolution algorithm with new mutation phase, crossover process, and selection mechanism is proposed. The results depicting the effectiveness of the proposed method are explained and outcomes are drawn.
Keywords: Islanding detection; Inverter based distributed generation; Slantlet Transform; Ridgelet Probabilistic Neural Network; Differential evolution algorithm (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918314570
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:231:y:2018:i:c:p:645-659
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.09.145
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().