EconPapers    
Economics at your fingertips  
 

Influences of energy data on Bayesian calibration of building energy model

Hyunwoo Lim and Zhai, Zhiqiang (John)

Applied Energy, 2018, vol. 231, issue C, 686-698

Abstract: Every building has different (and fuzzy) characteristics and contains complex sub-systems that affect each other. Therefore, significant uncertainties exist when modeling an entire building as a system. Calibration is necessary and able to reduce many sources of these uncertainties. Bayesian calibration is one of the automatic calibration methods that has been utilized in various applications. However, few researches were found that investigated the influences of quality and quantity of measured data used for the calibration. Moreover, Bayesian calibration requires considerable computing cost due to the inherent iteration attribute. This paper proposes the use of informative data to produce more accurate Bayesian calibration with reduced computing time. The measured energy data are classified by statistical classification methods. Using different energy measurement data, the study compares and analyzes the calibration outcomes with three criteria: input parameter estimation accuracy, energy use prediction accuracy, and overall computing time. The results show that the calculation time and the accuracy of the calibration are distinct for different selections of the data for calibration. Proper data should be used in comprehensive consideration of purpose, computing time and accuracy of calibration. Using informative data for calibration is able to keep similar accuracy but with 44% reduction in computing time compared to the use of all data.

Keywords: Building energy model; Bayesian calibration; Utility data; Informative energy data; Sensitivity analysis (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918314673
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:231:y:2018:i:c:p:686-698

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.09.156

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:231:y:2018:i:c:p:686-698