On the staking of miniaturized air-breathing microbial fuel cells
S. Mateo,
A. Cantone,
P. Cañizares,
F.J. Fernández-Morales,
O. Scialdone and
M.A. Rodrigo
Applied Energy, 2018, vol. 232, issue C, 8 pages
Abstract:
This work focuses on the scale-up of the MFCs by miniaturization and multiplication strategy. Performances of five stacks containing 1, 2, 5, 8 and 16 MFCs were compared. Each stack was evaluated under individual, parallel and series electrical connection as well as for cascade or individual hydraulic connection. Cascade feeding mode with a tank per stack favours the COD removal when the number of MFCs in the stack increases. However, despite operating without COD limitations, the energy production was disadvantaged. By changing the feeding system of a tank per stack into an individual tank per MFC, the performance of the whole stack enhances considerably. Stacking in series can increase the voltage 6 times while stacking in parallel can increase the current output about 4 times. For example, 8 MFCs can achieve 2.03 V connected in series and 6.98 mA connected in parallel. In addition, the power can be increased up to about 10 times leading to a power range high enough for real life applications.
Keywords: Microbial fuel cell; Stack; Cascade; Miniaturization; Multiplication (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918315332
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:232:y:2018:i:c:p:1-8
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.09.213
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().