Optimising the engine-propeller matching for a liquefied natural gas carrier under rough weather
C.H. Marques,
C.R.P. Belchior and
J.-D. Caprace
Applied Energy, 2018, vol. 232, issue C, 187-196
Abstract:
Dual-fuel Diesel engines have become the most interesting alternative for liquefied natural gas carriers (LNGCs) since they are able to use boil-off gas as fuel. However, there is a lack of studies about the optimisation of propulsion system selection considering weather conditions in an integrated approach. Thus, the present work aims to provide a comprehensive approach to perform the optimisation of engine-propeller matching for an LNGC under rough weather. A weather condition was included in the assessment of total resistance and thereby affected the propeller’s open water efficiency, shaft speed and brake power. Constraints were included to the approach in order to avoid propellers that could present issues concerning strength, cavitation and vibration. A differential evolution optimisation algorithm was applied to minimise the fuel expenditure of propulsion for a round trip. The case study was designed using an LNGC with cargo capacity of 175,000 m3 sailing in laden condition from Lake Charles to Tokyo Bay, via Panama Canal, and returning in ballast. All suitable matchings for 5346 propellers were found in 2.8 h and over 28% of them were constrained. The method has shown gains up to 19% of fuel expenditure reduction. The required brake power was approximately 20% higher for rough weather than for still water. Therefore, the approach used here has shown a significant gain and highlighted the value of exploring a broad range of propellers and engines in an integrated manner, as well as considering the weather condition.
Keywords: Optimisation; Propulsion; Dual-fuel Diesel engine; Fixed pitch propeller; Fuel consumption (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918314661
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:232:y:2018:i:c:p:187-196
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.09.155
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().