Energy harvesting and strain sensing in smart tire for next generation autonomous vehicles
Deepam Maurya,
Prashant Kumar,
Seyedmeysam Khaleghian,
Rammohan Sriramdas,
Min Gyu Kang,
Ravi Anant Kishore,
Vireshwar Kumar,
Hyun-Cheol Song,
Park, Jung-Min (Jerry),
Saied Taheri and
Shashank Priya
Applied Energy, 2018, vol. 232, issue C, 312-322
Abstract:
We demonstrate the feasibility of the strain energy harvesting from the automobile tires, powering wireless data transfer with enhanced frame rates, and self-powered strain sensing. For this, we used a flexible organic piezoelectric material for continuous power generation and monitoring of the variable strain experienced by a tire under different driving conditions. Power output of ∼580 µW at 16 Hz (∼112 km/h) from the energy-harvester and mounted on a section of a tire, is sufficient to power 78 LEDs. We further demonstrate that the stored energy was sufficient to power the wireless system that transmits tire deformation data with an enhanced frame rate to control system of a vehicle. Using sensors mounted on a tire of a mobile test rig, measurements were conducted on different terrains with varying normal loads and speeds to quantify the sensitivity and self-powered sensing operation. These results provide a foundation for self-powered real-time sensing and energy efficient data transfer in autonomous vehicles.
Keywords: Energy harvesting; Piezoelectric sensor; Smart tires (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918315022
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:232:y:2018:i:c:p:312-322
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.09.183
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().