Transient reversible solid oxide cell reactor operation – Experimentally validated modeling and analysis
S. Srikanth,
M.P. Heddrich,
S. Gupta and
K.A. Friedrich
Applied Energy, 2018, vol. 232, issue C, 473-488
Abstract:
A reversible solid oxide cell (rSOC) reactor can operate efficiently in both electrolysis mode and in fuel cell mode. The bidirectional operability enables rSOC reactors to play a central role as an efficient energy conversion system for energy storage and sector coupling for a renewable energy driven society. A combined system for electrolysis and fuel cell operation can result in complex system configurations that should be able to switch between the two modes as quickly as possible. This can lead to temperature profiles within the reactor that can potentially lead to the failure of the reactor and eventually the system. Hence, the behavior of the reactor during the mode switch should be analyzed and optimal transition strategies should be taken into account during the process system design stage. In this paper a one dimensional transient reversible solid oxide cell model was built and experimentally validated using a commercially available reactor. A simple hydrogen based system model was built employing the validated reactor model to study reactor behavior during the mode switch. The simple design leads to a system efficiency of 49% in fuel cell operation and 87% in electrolysis operation where the electrolysis process is slightly endothermic. Three transient operation strategies were studied. It is shown that the voltage response to transient operation is very fast, provided the reactant flows are changed equally fast. A possible solution to ensure a safe mode switch by controlling the reactant inlet temperatures is presented. By keeping the rate of change of reactant inlet temperatures five to ten times slower than the mode switch, a safe transition can be ensured.
Keywords: SOFC; SOEC; Reversible Solid Oxide Cell (rSOC); Transient operation; 1-Dimensional reactor model; Experiment validation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191831506X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:232:y:2018:i:c:p:473-488
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.09.186
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().