A critical review of heat and mass transfer in vegetative roof models used in building energy and urban enviroment simulation tools
Sergio Vera,
Camilo Pinto,
Paulo Cesar Tabares-Velasco and
Waldo Bustamante
Applied Energy, 2018, vol. 232, issue C, 752-764
Abstract:
Vegetated or green roofs are sustainable roofing systems that have become increasingly widespread across the world in recent decades. However, their design requires accurate numerical modeling to fully realize the benefits of this technology at the building and larger scales. For this reason, several heat and mass transfer models for vegetated roofs have been developed over the last 36 years. This paper provides a critical review of more than 23 heat transfer vegetative roof models developed between 1982 and 2018 that have been used for building energy or urban modeling purposes. Findings of the study include the following: (i) more than 55% of the vegetated roof models have been developed and validated using data from warm temperate climate zones; (ii) green roof validation efforts vary and do not follow a common verification and validation framework; (iii) four of the reviewed models have not been subjected to any simulation process; (iv) no model has been validated for semi-arid conditions or cold climates or during cold winter conditions; (v) the most common variable reported for validation (in more than half of the models) is substrate surface temperature; however, surface temperature does not fully test the accuracy of a model to represent all heat and mass transfer phenomena; (vi) practitioners access to these models is limited since only five of the 23 models have been implemented in whole-building energy models, such as EnergyPlus, TRNSYS, ESP-r, and WUFI; finally, (vii) despite the extensive studies on the impacts of vegetative roofs on building energy performance and urban temperature reduction, no studies have validated the model using whole-building energy data or at larger scales.
Keywords: Green roof; Heat transfer; Building energy simulation; Evapotranspiration; Vegetated roof (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918313904
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:232:y:2018:i:c:p:752-764
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.09.079
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().