EconPapers    
Economics at your fingertips  
 

Spatiotemporal variations of CO2 emissions and their impact factors in China: A comparative analysis between the provincial and prefectural levels

Kaifang Shi, Bailang Yu, Yuyu Zhou, Yun Chen, Chengshu Yang, Zuoqi Chen and Jianping Wu

Applied Energy, 2019, vol. 233-234, 170-181

Abstract: Due to the continuing industrialization and urbanization, China’s CO2 emissions have experienced a rapid increase in recent 30 years. The increase of CO2 emissions will not only effect country’s own sustainable development, but also potentially pose a negative impact on the global climate stability. Since the socioeconomic development is sensitive to geographic scales and regional heterogeneity, a systematic investigation of spatiotemporal variations (SV) of CO2 emissions and their impact factors (IF) across different levels will help to develop more effective and reasonable policies and measures for CO2 emissions mitigation. However, multi-scale analysis of those issues is still lacking. Hence, using two administrative levels (e.g., prefectures or provinces) in China as experimental objects, this study attempted to quantify and compare SV and IF of CO2 emissions from nighttime light images and socioeconomic data at different levels using the variation coefficient (VC), spatial autocorrelation spatial model, and spatial econometric model. Our results show that the VC of CO2 emissions is uninterruptedly increases from 0.66 in 1997 to 0.73 in 2006, and then gradually decreases to 0.69 in 2012 at the provincial level, and it consistently decreases from 1.29 in 1997 to 1.03 in 2012 at the prefectural level. The Global Moran’s I of CO2 emissions increases from 1997 to 2012 at the provincial and prefectural levels. Specifically, the Global Moran’s I gradually increases from 0.23 in 1997 to 0.27 in 2012 at the provincial level, while it shows a rapid growth trend, from 0.23 in 1997 to 0.34 in 2012 at the prefectural level. The proportion of second industry has been demonstrated as a major factor influencing CO2 emissions at different levels, while gross domestic product, urbanization rate, and population play more important roles in CO2 emissions at the prefectural level. This study illustrates that China’s CO2 emissions are sensitive to the spatial-temporal hierarchy of multi-mechanisms, and suggests that “proceed in the light of local conditions” strategies can help Chinese government for CO2 emissions mitigation.

Keywords: CO2 emissions; Nighttime light; Spatial autocorrelation; Spatial econometric model (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191831609X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:233-234:y:2019:i::p:170-181

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.10.050

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:233-234:y:2019:i::p:170-181