Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage
Long Zhang,
Kechao Zhou,
Quiping Wei,
Li Ma,
Wentao Ye,
Haichao Li,
Bo Zhou,
Zhiming Yu,
Cheng-Te Lin,
Jingting Luo and
Xueping Gan
Applied Energy, 2019, vol. 233-234, 208-219
Abstract:
For thermal energy storage applications using phase change materials (PCMs), the power capacity is often limited by the low thermal conductivity (λPCM). Here, a three-dimensional (3D) diamond foam (DF) is proposed by template-directed chemical vapor deposition (CVD) on Cr-modified Cu foam as highly conductive filler for paraffin-based PCM. Results showed the foam substrate was completely covered by continuous diamond films with high quality. And it showed a faster thermal response than that of Cu foam (CF) and Cu disc, while only a little slower than that of free-standing diamond disc with the same thickness. The incorporation of interconnected diamond foam with the diamond volume fraction of only 1.3% in the composite phase change material represented a great thermal conductivity enhancement over the pure paraffin, CF/paraffin and diamond particles reinforced paraffin by a factor of 25.8, 1.62 and 13.88, respectively. The great enhancement of the thermal conductive property was mainly attributed to interconnected diamond networks with high thermal conductivity, which effectively reduced the phonon-phonon and phonon-boundary scatterings. Besides, the DF/paraffin composite PCM exhibited an improved shape stability and a fast heat charging rate with the latent heat of 124.7 J/g. The marriage of the excellent properties of diamond and the inherent advantages of the 3D interconnected structure makes the diamond foams potential components or act as reinforcements in the field of high-efficiency heat dissipation and thermal energy storage.
Keywords: Diamond foam; 3D interconnected structure; CVD; Thermal conductivity; Thermal energy storage (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918315927
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:233-234:y:2019:i::p:208-219
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.10.036
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().