Economic viability of multiple algal biorefining pathways and the impact of public policies
Jesse R. Cruce and
Jason C. Quinn
Applied Energy, 2019, vol. 233-234, 735-746
Abstract:
This study presents an extensive systems-level multi-pathway sustainability assessment of algae biofuel production that demonstrates the necessity of high-value co-products, examines the impact of public policy scenarios, and identifies improvements and pathway directions required for economic viability. Engineering process models for several fuel and co-product pathways were leveraged to perform high fidelity techno-economic analysis. These pathways included: baseline hydrothermal liquefaction; protein extraction followed by hydrothermal liquefaction; fractionation into high-value chemicals with fermentation followed by hydrothermal liquefaction for fuels; and a small-scale first-of-a-kind plant coupled with a wastewater treatment facility. From these models, it was shown that hydrothermal liquefaction as a fuel-only pathway is not economically viable. Likewise, the benefits of coupling with wastewater water treatment are insignificant compared to the impact of reduced facility size resulting in increased capital costs. These models were also used to examine public policy scenarios, uniquely presenting their impact on the breakeven cost of fuel production and sensitivity to scenario assumptions. Specifically, depreciation type was shown to be irrelevant for writeoffs faster than 10 years. Due to discounting, short-term subsidies were found to capture 50% of the subsidy value in 6 years with an additional 24 years required for full subsidy valuation. Integration of a carbon economy was shown to decrease biofuel production costs, particularly for the protein pathway due to the co-product accounting. Finally, a metric of normalized costs was used to compare algal biorefineries to corn and cellulosic ethanol production, showing that algal systems are uniquely different due to significantly higher capital costs, though operational costs are comparable. This work demonstrates that, to reach economic viability, algal biofuel production must either utilize higher value non-fuel co-products or achieve drastic reductions in capital costs.
Keywords: Techno-economic analysis; Co-products; Algae biofuels; Fuel subsidies; Carbon tax (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191831599X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:233-234:y:2019:i::p:735-746
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.10.046
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().