EconPapers    
Economics at your fingertips  
 

Enhancement of power generation by microbial fuel cells in treating toluene-contaminated groundwater: Developments of composite anodes with various compositions

Shu-Hui Liu, Yu-Chuan Lai and Chi-Wen Lin

Applied Energy, 2019, vol. 233-234, 922-929

Abstract: This work develops microbial fuel cells (MFCs) with composite anodes that combine conductive coke (CC) and conductive carbon black (CCB) to improve the performance of those MFCs in treating toluene-contaminated groundwater. The effect of the combination ratio (CRCCB:CC) of the composite anode with various ratios of CCB to CC on MFC performance was evaluated. The results demonstrate that the time required (tr) for the MFC with CR1:3 to remove all toluene was half of that required by other MFCs except for that with CR1:9. Additionally, CR1:3 is associated with the highest power density (PDmax) of 72 mW/m2, which is 1.24–2.78 times higher than those obtained using other CRs or a single-material anode (CC) except for CCB, owing to the high conductivity of the latter. Cyclic voltammetry (CV) yields oxidized-reduced current peaks of CR1:3 that are 1.44–2.89-fold as high as those obtained using other CRs, suggesting that the composite anode with CCB or CC at an optimal ratio accelerates the oxidation-reduction reactions, favoring the removal of organic waste. This work establishes the feasibility of using a composite anode to improve the removal of toluene and the generation of electricity by MFCs.

Keywords: Microbial fuel cells; Composite anode; Toluene removal; Power production (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918316751
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:233-234:y:2019:i::p:922-929

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.10.105

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:233-234:y:2019:i::p:922-929