Multi-objective optimization and comparative performance analysis of hybrid biomass-based solid oxide fuel cell/solid oxide electrolyzer cell/gas turbine using different gasification agents
Ali Habibollahzade,
Ehsan Gholamian and
Amirmohammad Behzadi
Applied Energy, 2019, vol. 233-234, 985-1002
Abstract:
In this study, a novel configuration consisting of a biomass-based anode/cathode recycling solid oxide fuel cell integrated with a gas turbine and solid oxide electrolyzer cell is proposed for power and hydrogen production. The new configuration is modeled using Air, O2-enriched air, O2 and CO2 as the gasification agents. Accordingly, the waste heat of the SOFC is exploited in the gas turbine and subsequently the generated power of the gas turbine is transferred to a solid oxide electrolyzer cell unit for hydrogen production. Consequently, the proposed system is analyzed and compared from energy, exergy and exergoeconomic viewpoints using different gasification agents through the parametric study. Subsequently, the system in which pure CO2 is considered as the gasification agent is optimized by multi-objective optimization method based on genetic algorithm. Accordingly, the optimal solution points are gathered as four Pareto frontiers considering exergy efficiency, total product cost, levelized emissions and rate of hydrogen production as the objective functions. The results of parametric study show that the highest exergy efficiency/power production at the same time the lowest total product cost are expected for the system using O2 as the gasification agent. On the other hand, using CO2 as the gasification agent (by recycling 20% of the emitted CO2 into the gasifier) leads to the highest hydrogen production rate and the lowest levelized emissions in a wide range of the effective parameters. Considering exergy efficiency and total product cost as the objective functions, the results of the multi-objective optimization indicate that, exergy efficiency and total product cost would be 45.25% and 16.21 $/GJ, respectively at the optimum operating condition. Furthermore, results of multi-objective optimization from hydrogen production rate and levelized emissions viewpoints show that the corresponding values may be 8.561 kg/h and 7.745 t/MWh, respectively.
Keywords: Solid oxide fuel cell; Solid oxide electrolyzer cell; Gasification; CO2 capture; SOFC; SOEC (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (37)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191831643X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:233-234:y:2019:i::p:985-1002
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.10.075
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().