EconPapers    
Economics at your fingertips  
 

Probabilistic individual load forecasting using pinball loss guided LSTM

Yi Wang, Dahua Gan, Mingyang Sun, Ning Zhang, Zongxiang Lu and Chongqing Kang

Applied Energy, 2019, vol. 235, issue C, 10-20

Abstract: The installation of smart meters enables the collection of massive fine-grained electricity consumption data and makes individual consumer level load forecasting possible. Compared to aggregated loads, load forecasting for individual consumers is prone to non-stationary and stochastic features. In this paper, a probabilistic load forecasting method for individual consumers is proposed to handle the variability and uncertainty of future load profiles. Specifically, a deep neural network, long short-term memory (LSTM), is used to model both the long-term and short-term dependencies within the load profiles. Pinball loss, instead of the mean square error (MSE), is used to guide the training of the parameters. In this way, traditional LSTM-based point forecasting is extended to probabilistic forecasting in the form of quantiles. Numerical experiments are conducted on an open dataset from Ireland. Forecasting for both residential and commercial consumers is tested. Results show that the proposed method has superior performance over traditional methods.

Keywords: Probabilistic load forecasting; Long short-term memory (LSTM); Pinball loss; Demand response; Individual consumer; Quantile regression; Smart meter (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (66)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918316465
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:235:y:2019:i:c:p:10-20

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.10.078

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:235:y:2019:i:c:p:10-20