EconPapers    
Economics at your fingertips  
 

Biological methanation: Strategies for in-situ and ex-situ upgrading in anaerobic digestion

M.A. Voelklein, Davis Rusmanis and J.D. Murphy

Applied Energy, 2019, vol. 235, issue C, 1071 pages

Abstract: This study investigated in-situ and ex-situ biological methanation strategies for biogas upgrading potential. The addition and circulation of hydrogen with a ceramic gas diffuser unit revealed positive effects on the methanogenic process. A short-term maximum methane productivity of 2.5 L CH4 per L reactor volume per day (LVR−1 d−1) was obtained in-situ. Adverse effects of elevated dissolved hydrogen concentrations on acetogenesis became evident. Ex-situ methanation in a reactor subjected to gas recirculation for recurrent 24 h periods achieved methane formation rates of 3.7 L CH4 LVR−1 d−1. A biomethane with methane concentrations in excess of 96% successfully demonstrated the potential for gas grid injection. A theoretic model supplying gases continuously into a sequential ex-situ reactor system and steadily displacing the upgraded biogas confirmed similar methane formation performance and was advanced to a full-scale concept. Gas conversion efficiency of 95% producing biomethane at 85% methane content was attained. A hybrid model, where an in-situ grass digester is followed by an ex-situ reactor, is proposed as a novel upgrading strategy.

Keywords: Biogas; In-situ; Ex-situ; Biological methanation; Full-scale upgrading strategies; Power to gas (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918317124
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:235:y:2019:i:c:p:1061-1071

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.11.006

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:235:y:2019:i:c:p:1061-1071